

Trunk injection of imidacloprid and oxytetracycline in young Valencia trees

Leigh Archer

UF/IFAS - Southwest Florida Research and Education Center, Immokalee, FL March 23, 2022

Funding

Development of an automated delivery system for therapeutic materials to treat HLB infected citrus

USDA-NIFA-SCRI #2019-70016-29096

United States Department of Agriculture National Institute of Food and Agriculture

Trunk injection

- Targeted delivery of crop protection materials into the stem or trunk of woody species as an alternative to spraying or soil drenching
- Injection occurs into the xylem; materials are then distributed through the plant with the transpiration stream

Trunk injection

- Precision delivery
- Eliminate spray drift
- Minimize run-off and environmental contamination
- Reduced risk of exposure for farmworkers
- Longer residual activity

Field trial

- Valencia sweet orange trees (5-year-old) on Kuharske rootstock
- Injections performed in Fall (October '20) and Spring (April '21)
 - Oxytetracycline
 - Imidacloprid
 - Water
 - No Injection
- Harvest data collected in February '21 and February '22

Injections performed at recommended label rates using Chemjet tree injectors (2 injectors per tree on opposite sides of the trunk)

Efficacy of injection: Imidacloprid

63% adult psyllid mortality **one week** after injection

Efficacy of injection: Imidacloprid

Psyllid mortality 2 months after injection

18% adult psyllid mortality **two months** after injection

Efficacy of injection: Oxytetracycline

Efficacy of injection: Oxytetracycline

Efficacy: 6 months after injection one

Efficacy: 6 months after injection one

Percent Fruit Drop

Yield

Fruit quality after fall injection

Oxytetracycline

Fruit quality after spring injection

Oxytetracycline

Stage 0 (S0) = No flush

S1 = Feather

S2 = Elongation

S3 = Leaf Expansion

S4 = Leaf Hardening

Efficacy: 1 year after injection one

Change in tree size: October 2020 – March 2022

Trunk injection: Risks

- Wounding and internal injury associated with drilled injection ports
- Phytotoxicity associated with therapeutics

Water

Water

Oxytetracycline

Imidacloprid

Water

Imidacloprid

Spring Summer None

Summary

- Trunk injection can effectively deliver crop protection materials to target pests and diseases of citrus
- The efficacy of imidacloprid injection diminished within 2 months
- Oxytetracycline injection reduced bacterial levels in HLBaffected trees
- The long-term effects of trunk injection on tree health still need to be determined